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1. Feature Detection

1.1. Edge detection

A new robust algorithm for edge detection has been developed [22]. The algorithm detects
both roof and step type edges. A pixel is declared as an edge pixel if there is a consensus
between different processes that try to determine if the pixel lies on a discontinuity. A robust
estimation method was used to estimate local fits to windows in the pixel's neighborhood and
accumulate votes from each fit. The use of robust estimators makes it possible to transform
any window possibly containing a discontinuity to a binary window containing a step edge
in the location of the discontinuity. Conventional methods to detect this step edge can then
be employed.

Experimental results were obtained on simulated edges and synthetic images with varying
Gaussian and random noise levels, and the probability of detection was analyzed. The
algorithm has also been applied to several real intensity and range images and has performed
well. An example, including a comparison with the Canny edge detector, is given in Figure 1.

Figure 1: Comparison of the consensus-based (middle) and Canny (right) edge detectors
applied to a noisy range image of a cube.

Another edge detection study [9] dealt with mask-based edge detectors. The orthogonal
set of 3 x 3 Frei-Chen edge detection masks was originally proposed based on a vector space
approach. The way the masks were chosen was not fully explained. An interpretation of
the Frei-Chen masks has been formulated in terms of eight-dimensional Fourier transform
coefficient vectors. The linear transformation between the nine-dimensional Frei-Chen space
and the eight-dimensional Fourier transform space has been derived. A modified set of eight
orthogonal masks based on the frequency space analysis was also developed.

1.2. Slope selection

A set of n distinct points in the plane defines (n) lines by joining each pair of distinct points.
The median slope of these O(n 2 ) lines was proposed by Theil as a robust estimator for the
slope of the line of best fit for the points. A randomized algorithm for selecting the kth
smallest slope of such a set of lines which runs in expected O(n log n) time has been defined
[101. An efficient implementation of the algorithm was developed and used extensively to
gain practical experience.



The problem of fitting a straight line to a set of data points is an important task in
many application areas (e.g., statistical estimation, image processing, and pattern recogni-
tion). Recently the computation of linear estimators that are robust has been recognized as
important, since these estimators are insensitive to outlying data points, which arise often in
practice. One such robust estimator studied [42], the repeated median line estimator, achieves
the highest possible breakdown point of 50%. The following results were obtained: (1) a sim-
ple practical randomized algorithm that runs in O(n log2 n) time with high probability, and
(2) a slightly more complex randomized algorithm which performs as well asymptotically,
but empirical evidence shows that this algorithm performs in time O(n log n) on many real-
istic input distributions. Empirical evidence for the efficiency of this algorithm was obtained
under a number of input distributions.

2. Estimation

2.1. Robust estimation

Data processing for scientific and industrial tasks often involves accurate extraction of theo-
retical model parameters from empirical data, and requires automated estimation methods
that are robust in the presence of "noisy" (i.e., contaminated) data. Robust estimation is
thus an important statistical tool that is frequently applied in numerous fields of science
and engineering (e.g., automated manufacturing, robotic navigation, image processing, and
computer vision).

Since the computational complexity of a robust estimator is one of the most important
measures of its practicality, searching for methods that reduce the time (and space) com-
plexity of robust estimators is a desirable research goal. Several computationally efficient
algorithms were developed [43] for the exact computation of robust statistical estimators.
In particular, the design and analysis of such algorithms were studied for various problem
domains, including line, curve, and surface fitting.

A general underlying methodology was introduced for the efficient computation of the
classes of estimators considered. Specifically, computational geometry techniques in the
derivation of robust estimation algorithms were applied. Furthermore, it has been demon-
strated that the derivation, in particular, of randomized algorithms for the above tasks re-
sults in algorithms that have the following properties: (1) they always terminate and return
the correct computational results, (2) the improved (expected) running times occur with
extremely high probability, (3) they are quite easy to implement; (4) constants of propor-
tionality (hidden by the asymptotic notation) are small (i.e., the algorithms are practical),
and (5) they are space optimal (i.e., they require linear storage).

Implementational issues were considered in great detail and have resulted in considerable
practical experience with the algorithms.

2.2. Bayesian estimation

Bayesian estimation has many applications in computer vision. A frequent objection to
Bayesian estimation is that the probability density functions (pdf's) involved are usually not
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exactly known. In fact, however [201, exact knowledge of the pdf's is not important; it often
suffices to know the pdf's approximately. Furthermore, it may even suffice to have a family
of pdf's, one of which approximates the actual pdf, provided a "second-stage" pdf on the
family is specified such that the approximation of the actual pdf has high probability.

Bayesian estimation of digital signals is ordinarily concerned with the problem of esti-
mating an ideal signal, given a noisy signal. The problem of partial or "qualitative" Bayesian
description, rather than complete estimation of the ideal signal, was investigated [31]. For
example, in the case of a piecewise constant signal, instead of estimating the value of the
ideal signal, one can seek only a piecewise symbolic description of the signal-e.g., is the
value high or low, where these descriptors are defined by probability densities on the pos-
sible signal values. This task is computationally less costly than that of complete Bayesian
estimation of the signal; moreover, it has been found that the descriptions can be estimated
robustly. This approach has been illustrated both for digital signals and for a simple class
of digital images.

The problem of estimation using partial (e.g., compressed) information about the ob-
servations is important in practice. One reason for its importance is that one might be
interested in communicating data from the sensor(s) to the place where decisions are made
(e.g., remote sensing data). Another reason is that estimation using compressed information
might be less costly in terms of computation. The problem of estimating the parameters of
a signal having known form was studied [35] (e.g. polynomial of degree r), using a Bayesian
approach to estimation. In particular, conditions were studied under which the estimates
obtained using partial information are the same as those obtained using full information.
Also considered was an application to distribute detection (sensor fusion). The use of partial
information to obtain partial estimates was also discussed.

3. Matching

Point-pattern matching relaxation techniques have been extended to allow matching of both
point-like and linear features [17]. Specifically, a compatibility function was defined that
relies on relative orientation information, which is translation and rotation invariant and
can be more reliably extracted from noisy images than can positional information. This
function was used to generalize the matching technique of Ranade and Rosenfeld; it can also
be incorporated into other relaxation algorithms. The performance of the function has been
illustrated using examples from the domain of object recognition in synthetic aperture radar
(SAR) imagery. An example is shown in Figure 2.

Also developed was a computational vision approach [36] for the estimation of 2D trans-
lation, rotation, and scale from two partially overlapping images. The approach results in a
fast and novel method that produces excellent results even when large rotation and scaling
have occurred between the two frames, and the images are devoid of significant features. An
illuminant direction estimation method is first used to obtain an initial estimate of camera
rotation. A small number of feature points are then located based on a Gabor wavelet model
for detecting local curvature discontinuities. An initial estimate of scale and translation is
obtained by pairwise matching of the feature points detected in both frames. Finally, hierar-
chical feature matching is performed to obtain an accurate estimate of translation, rotation
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(a) (b)

(c) (d)

Figure 2: (a) Synthetic SAR image of a jet airplane. (b) Point and line features extracted
from the image in (a). (c) Plausible configurations derived from high-confidence pairings
after two iterations. (d) Plausible configurations after eight iterations.

4



and scale. Experiments with synthetic and real images have shown that this algorithm yields
accurate results when the scales of the pair of images differ by up to 10%, the overlap be-
tween the two frames is as small as 35%, and the camera rotation between the two frames
is significant. Experimental results on several real Mojave desert images acquired from a
balloon have been obtained. The method has also been applied to texture and stereo image
registration, satellite image mosaicking, and moving object detection. Two examples are
shown in Figures 3 and 4.

(a) (b)

(c) (d)

Figure 3: (a) & (b) Input images (Mojave desert). (c) Mosaicking of the two images.
(d) Difference between the registered images.
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(a) (b)

(c) (d)

Figure 4: (a) & (b) Two frames of a motion sequence. (c) Direct difference between (a) and
(b). (d) Difference between the registered images.
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4. Segmentation and Recognition

A method of recognizing compact objects in aj, image by energy function minimization was
developed [3]. The energy function is based on a polar coordinate object representation,
defined using any center from which the object's contour is visible. It incorporates both
low-level and high-level information about the object: contour sharpness and smoothness
at the low level, and contour shape at the high level. Ar, example of the performance of
the method is shown in Figure 5. Note how the center shifts to follow the centroid of the
contour.

Figure 5: Example of object delineation and identification using simulated annealing. Upper
left: Input image (tank in an infrared scene); black dot shows initial center. Successive frames
show iterations 10, 20,..., 70 of the process; the white curve is the current estimate of the
sharpest, smoothest contour, and the black curve is the best-fitting target model.

A shape recognition method was developed [7] based on an intrinsic equation represen-
tation of the 2D silhouette of a shape. This representation provides a method Df recognition
that is insensitive to perspective distortion and also allows the slant of the shape to be es-
timated. A parameter called the "tolerance" is incorporated in the method, which makes it
possible to change the scale (relative resolution) of shape processing.

The presence of an object in an image usually does not depend on its position within the
visual field. That is, its presence is invariant with respect to such properties as translation,
rotation, and size. This presents problems for learning algorithms whose only feedback
involves the existence of the target object, not its position. It must correctly determine an
input-output behavior without knowing exactly which inputs are relevant to the behavior at
any point in time. The constraint motion learning algorithm was applied to the problem of
invariant learning [4]. The properties of the algorithm facilitate correct learning in distributed
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environments and help with learning under invariance. A hierarchical learning scheme was
formulated that improves accuracy without significantly increasing spatial requirements.

More recently, the problem of object recognition was studied [39] by considering it in the
context of an agent operating in an environment, where the agent's intentions translate into
a set of behaviors. In this context, an object can fulfill a function; if the agent recognizes this,
it has in effect recognized the object. What is needed to perform this type of recognition is,
on one hand, a definition of the desired function, and on the other, the means of determining
whether the object can fulfill that function. To find out if an object can fulfill a function, it
is necessary to perform various partial recovery tasks; in other words, it is only necessary to
solve subproblems of the general recovery problem.

5. Recovery

Plants, such as trees, can be modeled by three-dimensional hierarchical branching structures.
If these structures are sufficiently sparse, so that self-occlusion is relatively minor, their
geometrical properties can be rý "overed from a single image. Specifically, it has been shown
[40] that the parameters of a classical tree branching model can be recovered from a single
orthographic image of a tree.

The pose of an object can be found from a single image when the relative geometry of
four or more noncoplanar visible feature points is known. An algorithm was developed [41],
called POS (Pose from Orthography and Scaling), that solves for the rotation matrix and
the translation vector of the object. It uses a linear algebra `ochnique under the scaled
orthographic projection approximation. A second algorithm, POSIT (POS with ITerations),
uses the pose found by POS to remove the perspective distortions from the image, and
then applies POS to the corrected image instead of the original image. POSIT converges to
accurate pose measurements after a few cycles of image corrections and POS computations,
even in conditions where perspective distortions are large. POSIT can be used with many
feature points at once for added insensitivity to measurement errors and image noise. POSIT
can be implemented in 25 lines or less in Mathematica.

6. Hand-Eye Coordination

Traditional approaches to robot hand/eye coordination require that various components of
the system be calibrated with respect to a common reference, but calibration is difficult and
error-prone and may invalidate the complex, high-precision inverse kinematic computations
that are also a feature of these approaches. A fundamentally new control technique was
developed [161 that does not require any calibration and closely integrates visual feedback
into the control mechanism. This is made possible by the introduction of a mapping, called
the Perceptual Kinematic Map, from the control space of the manipulator directly onto a
space defined by a set of measurable image parameters. This strategy achieves robustness
by monitoring qualitative rather than quantitative changes as it explores the surface defined
by this mapping. Furthermore, it employs a Kalman-Bucy filter for additional robustness
in measuring image parameters. Successful experimental results were obtained, and possible
generalizations and extensions of the technique were considered.
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A general framework was developed [32] for reasoning about robot hand positioning tasks
involving a moving target, such as catching, hitting, interception, etc. It has been shown how
this framework may be used to achieve robust vision-based control. Different levels at which
visual input is involved were considered in pursuing the dynamically-defined goal. A given
task is first transformed into one of constrained trajectory planning on a topological space
defined by a set of image parameters. A learning phase first learns the qualitative features of
this perceptual control surface so that further operations may be carried out autonomously
without precise calibration of different parts of the system. This differs significantly from
the classical approaches that require more accurate descriptions of the robot environment
and the manipulation task.

7. Motion Planning

Current approaches to robot motion planning are limited in their ability to deal with an
uncertain and dynamically changing environment. Difficulties involved in modeling the sit-
uation were analyzed and a probabilistic model was developed based on discrete events that
abstract the dynamic interaction between the mobile robot and the unknown part of the envi-
ronment. The resulting framework makes it possible to design and evaluate motion planning
strategies that consider both the known portion of the environment and the portion that is
unknown, but satisfies a probability distribution. Three instances of the general model were
studied [38] that yielded useful results in designing efficient motion planning algorithms as
functions of parameters representing a robot's environment and its behavior with respect to
unexpected events.

Specifically investigated [5] was the problem of robot navigation in the presence of moving
obstacles and on the basis of visual information. A computational theory was developed that
suggests several strategies that a robot can follow in order to plan a path (from a specified
start to a specified end point) in the presence of moving obstacles, whose motion is not known
a priori. The input to this perceptual process is time varying imagery acquired by the robot
that navigates. The output is a strategy that indicates how the robot should move in order
to obtain a safe path, i.e. a strategy that maximizes the probability of safely reaching the
goal using visually acquired knowledge at every time instant. Smooth acceleration strategies
for planning trajectories in 2D were also studied. Heuristics which approximate the minimax
trajectory for a component of the acceleration have also been investigated.

In another study [13], the problem of efficiently planning a path for a robot between two
points was addressed when the path is forced to change dynamically by the occurrence of
certain events in the environment. An event, for example, may be the discovery of another
moving object on a collision course with the robot. The robot is forced to take evasive action
whenever such an alarm occurs. A probabilistic model was developed that represents the
dynamic behavior in terms of alarms following a Poisson distribution, and safety rules that
assume that some regions are safe. A provably optimal expected solution for the problem
has been derived. The effect of the probabilistic parameter (A) of the dynamic environment
on the optimal path, and the use of "vision" (or time to collision) on the planned paths,
have been studied. The results can be used in designing heuristics for path planning in a
more general framework, and can be generalized to other situations. This study has given
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insights into the role of various parameters on the average efficiency of path-planning in a
simply dynamic, unknown environment. The simplicity of the model used is justified by
the difficulty of analyzing a more complicated (unknown) dynamic environment, and by the
generality of the results obtained using this simple model.

Finally, the problem of efficient path planning was studied [301 for a point robot in a
partially known dynamic environment. The static known part of the environment consists
of point shelters distributed in planar terrain, and the dynamic, unknown part is abstracted
in the form of alarms that cause the robot to leave its current (pre-planned) path and divert
to the nearest shelter. A probabilistic analysis was performed of the expected times for the
dynamic paths generated when the alarms follow a Poisson distribution with parameter A.
A case study with three shelters was used to illustrate the dependence of the expected travel
times on A for two alternate static paths. Two different strategies were formulated for the
general case of n shelters and shown to be superior for different ranges of values of the alarm
rate A (very low and very high values respectively). Some ways of generalizing the approach
were also considered and possible applications have been examined.

In further studies [28, 29], a probabilistic method was developed for noisy sensor based
robotic navigation in dynamic environments. The method generates an optimal trajectory
by considering as optimal criteria, the probability of not colliding with the obstacles and
the probability of accessing an operational position with respect to a moving target object.
In particular, it can generate a trajectory that guarantees a tolerable associated collision
risk. Estimates of the obstacle's kinematic parameters and measures of confidence in these
estimates are used to produce the probability of collision associated with any robot displace-
ment. The probability of collision is derived in two steps: a stochastic model is defined in the
kinematic state space of the obstacles, and collision events are given simple geometric char-
acterizations in this state space. In particular, the estimates can be used to define regions
where the probability of encountering any obstacle is bounded by a predefined value.

8. Visibility and Navigation

In a study of 2D visibility, a parallel algorithm was developed [24] for computing the vis-
ible portion of a simple planar polygon with N vertices from a given point of the plane.
The algorithm accomplishes this optimally for star-shaped polygons in O(log N) time using
O(N/ log N) processors. In the worst case, though, it may take O(N log N) time for oddly
shaped polygons. The algorithm is rather simple compared to other visibility related al-
gorithms, and has a very small run time constant, making the algorithm faster and more
practical to implement than others. The inter-processor communication needed for this al-
gorithm involves only local neighbor communication and scan operations (i.e. parallel prefix
operations). Thus, the algorithm can not only be implemented on an EREW PRAM, but
also on a hypercube connected parallel machine, which is a more practical machine model.
The algorithm has been implemented on the Connection Machine, and various performance
tests were conducted.

Representing natural terrain is an important issue in a variety of application domains.
Various digital models have been developed that are able to represent terrain. Among them,
regular grids have been extensively used because of their simplicity and because they can
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be directly embedded on massive parallel architectures with fixed topologies. On the other
hand, Triangulated Irregular Networks (TINs) better adapt to the irregular nature of natural
terrain, but they do not offer any kind of regularity. A parallel algorithm was developed [26]
to compute a TIN based on the Delaunay triangulation. The algorithm is designed for
a massive SIMD computer with general communication, and has been implemented on a
Connection Machine.

An algorithm was also developed [331 for solving region-to-region visibility problems on
digital terrain models using massively parallel hypercube machines like the Connection Ma-
chine CM-2. This algorithm is an extension of an earlier developed point-to-region visibility
algorithm. Since global communication is the bottleneck in this kind of algorithm, the al-
gorithm focuses on the reduction of global communication. The algorithm analyzes a strip
of the source region at a time, and sweeps through the source, strip by strip. At most, four
sweeps are needed for the analysis. By exploring the coherence properties in the processor
structure, global communication is minimized, and complexity is substantially improved.
Furthermore, all global write operations are exclusive and concurrency in global read opera-
tions is minimized. Since the problem size is usually large, rules of decomposition have been
designed to efficiently handle cases where the required number of processors is greater than
available. The algorithm has been implemented on a Connection Machine CM-2, and results
of computational experiments are presented.

On a more general level, a new type of visual information was formulated [34] which
can be exploited by algorithms for path planning or obstacle avoidance. Traditionally, a
robot's visual system is assigned the task of reconstructing the geometry of the surrounding
scene. The navigation problem can then be solved by means of classical robotics (control
of mechanisms). Unfortunately, it is still impossible to accurately compute the depth maps
robots are supposed to use for navigating. Furthermore, it appears that such data may in
fact not be the most suitable for the goals we want to achieve. A new approach to the
navigation problem was developed, based on the exploitation of free space doors, in which
visual processes are closely and actively integrated with the control of the robotic system.

Finally, an approach for autonomous localization of ground vehicles on natural terrain
was developed [37]. The localization problem is solved using measurements including alti-
tude, heading and distances to specific environmental points. The algorithm utilizes random
acquisition of distance measurements to prune the possible location(s) of the viewer. The
proposed approach is also applicable to airborne localization. The computational complexity
of the implementation on the Connection Machine and the accuracy of the localization have
been analyzed.

9. Motion Perception

9.1. Transparency

Two line patterns in relative motion [1] can give rise to either the perception of motion
coherence or that of motion transparency. In the case of motion coherence, one velocity is
perceived for both patterns, whereas for motion transparency, two velocities are perceived.
The velocity histogram, which counts the number of occurrences of each observed value of the
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velocity vector, is an important tool for the detection of coherence or transparency. When
this histogram is unimodal, coherence is perceived, and when it is bimodal, transparency.
This was demonstrated for various types of line patterns, composed of parallel or non-parallel
line segments or of polygonal lines.

If two or more curve patterns are used in relative motion, the probability of the perception
of motion transparency is high. This work [2] has led to an explanation of this phenomenon.
The existence of regions of high curvature makes it possible to solve the aperture problem
for each individual pattern. If the average curvature of the patterns is high, then the errors
in the measurement of the normal velocity component and the curvature are proportionally
low. If the velocity of each pattern is estimated through the velocity histogram, which counts
the number of occurrences of each velocity value, then the pattern velocity will give rise to
a distinct peak. The peak spread is proportional to the errors in the measurement of the
normal velocity component and the curvature. For patterns with regions of high ,ature,
the peaks will exhibit small spreads, and therefore, different peaks will have sma. ;aps.
The existence of distinct peaks in the velocity histogram gives rise to the perc Ion of
motion transparency. On the other hand, if the peaks have a large overlap, or if we have
just one peak in the velocity histogram, then the perception of motion coherence results. In
general, except for the case in which the average pattern curvature is very low, the different
peaks have a small overlap, and therefore motion coherence is almost never perceived. This
has been verified, through perceptual experiments, for different types of periodic open ar
closed curve patterns.

The task of segmenting multiple objects moving in space can require processing of the
optical flow. This becomes especially difficult when small objects are densely distributed in
space, like trees and bushes in a forest, or partially transparent objects. In this case motion
transparency is perceived; this requires computing more than one value of the optical flow
at each pixel, which is not accounted for by current motion theories. A statistical model
has been developed [14] for the perception of motion transparency. The model has applied
it to the analysis of situations involving two superimposed line patterns moving in the fron-
toparallel plane. If these patterns have regions of high curvature, or features like end-points
or corners, the aperture problem can be solved for each pattern separately; consequently,
motion transparency is perceived. On the other hand, in the absence of features, or for small
curvature, motion coherence is perceived which is given by the motion of the compound
pattern. A statistical model has been developed for the perception of motion transparency
and coherence which is given by a two-stage process for the extraction of the optical flow
and the velocity histogram. The velocity histogram, which is a plot of the number of oc-
currences of each velocity vector, is unimodal for motion coherence and bi-modal for motion
transparency. The image is divided into regions, and inside each of them the optical flow
is computed. The velocities of line end-points and comers are computed by matching them
between images. For lines, the normal velocity components are combined by computing the
intersection of the corresponding constraint lines in the velocity space. A generalized version
of the two-stage process is used for the extraction of the optical flow which takes into ac-
count superimposed patterns. This model is also able to predict the transition between the
perception of motion transparency and coherence, and it is in good agreement with informal
perceptual experiments done with line patterns.
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9.2. Uncertainty and clustering

Energy filters are tuned to space-time frequency orientations. In order to compute velocity
it is necessary to use a collection of fiters, each tuned to a different space-time frequency. In
a probabilistic framework, the properties of the motion uncertainty have been analyzed [8].
Its lower bound, which can be explicitly computed through the Cram&-Rao inequality, will
have different values depending on the fiter parameters. It has been shown, for the Gabor
filter, that in order to minimize the motion uncertainty, the spatial and temporal filter sizes
cannot be arbitrarily chosen; they are only allowed to vary over a limited range of values.
Consequently, the temporal filter bandwidth is larger than the spatial bandwidth. This
property is shared by motion sensitive cells in the primary visual cortex of the cat, which are
known to be direction selective and are tuned to space-time frequency orientations. It seems
that these cells have larger temporal bandwidths relative to their spatial bandwidth because
they compute velocity with maximum efficiency, that is, with minimum motion uncertainty.

Image motion can be estimated by matching feature "interest" points in different frames
of video image sequences. The matching is based on local similarity of the displacement
vectors. Clustering in the displacement vector space can be used [18] to determine the set
of plausible match vectors. Subsequently, a similarity based algorithm performs the actual
matching. The feature points are computed using a multiple filter image decomposition
operator. The algorithm has been tested on synthetic as well as real video images. The
novelty of this approach consists of the fact that it handles multiple motions and performs
motion segmentation.

A method was developed [231 for the discrimination of 3D texture patterns through the
use of motion cues. 3D texture is defined by the 3D distribution of primitive elements, or
volumetric texels, which can be solid or planar, opaque or transparent. Trees and bushes are
examples of 3D textures which are very common in natural scenes. One of the motivations
to work in the domain of 3D texture comes from the fact that current theories of low-level
vision, including theories of motion, stereo, and texture, are unable to deal with this kind
of visual information. 3D texture patterns can be discriminated in time-varying imagery
by using velocity information observed from their projections onto the image plane. The
method of doing so combines the velocity information given by contours and features, such
as end-points and comers. The image is divided into regions, and each region into windows.
For each window the feature velocity is computed through correspondence; the normal ve-
locity components are also measured and the intersection of all possible constraint lines is
computed. The feature and contour velocities are used to generate the velocity histogram,
which is the plot of the number of occurrences of each velocity vector. If a region contains
two superimposed patterns in relative motion then its velocity histogram is bi-modal. This
corresponds to the perception of motion transparency. This method has been successfully
tested for both synthetic 3D textures and real images of plants. An example is shown in
Figure 6.
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Figure 6: Upper left: Two bushes in front of one another. Lower right: Bimodal velocity
histogram. Lower left: Edges contributing to the first peak, which belong to the closer bush.
Upper right: edges contributing to the second peak, which belong to the farther bush.

10. Structure from Motion

10.1. Feature-based methods

The long sought linear algorithm was formulated [6] for the point and line correspondence
problem. A new statistical definition of feature points was also introduced, under which point
features and line features are just the two extremes of a spectrum of possible features. Almost
any pixel in the image can be classified and used as a feature point in this scheme. Based
on this definition, an optimal algorithm was designed for the structure from motion problem

that can utilize information from across the whole image. The input to the algorithm is the
image displacement, and its uncertainty at each pixel for a set of three frames. The only

14



assumptions used are rigidity and Gaussian noise in the image displacements. The outputs
are the parameters of the motion between the frames and the structure of the scene.

The theory behind this approach is simple, can be extended in several ways (e.g. to
multiple frames), and has been developed with noise stability in mind. However, more
important is that the new statistical definition of the features relaxes the requirements for
the image displacement computation. If the tangential component of a displacement cannot
be computed, its uncertainty is set to infinity. The algorithm can tolerate infinite uncertainty
for all the tangential components. In this way the aperture problem is avoided.

Two important structure from motion problems in recent years have been the point based
and the line based problem (using image motion of points or lines to find 3D motion and
structure). A considerable advance came from the development of linear algorithms for lines
and points separately. However the solutions to these two problems could not be combined
into a linear algorithm that uses points and lines together. Such an algorithm has now
been developed [15]. This algorithm needs three frames and a combination of point and line
correspondences that give enough constraints to solve the problem. Using redundant points
and lines, the algorithm exhibits stability in the presence of noise. It has been tested with
simulated data under a wide variety of conditions.

10.2. Regularization methods

Humans use various cues in order to understand the structure of the world from images. One
such cue is the contours of an object formed by occlusion or from surface discontinuities. It is
known that contours in the image of an object provide various amounts of information about
the shape of the object in view, depending on assumptions that the observer makes. Another
powerful cue is motion. The ability of the human visual system to discern structure from a
motion stimulus is well known and it has a solid theoretical and experimental foundation.
But when humans interpret a visual scene, they use various cues in order to understand what
they observe, and the interpretation comes from combining the information acquired from
the various modules devoted to specific cues. In such an integration of modules it seems that
each cue carries a different weight and importance.

Several experiments were performed [11] in which the only cues available to the observer
were contour and motion. It turns out that when humans combine information from contour
and motion to reconstruct the shape of an object in view, if the results of the two modules-
shape from contour and structure from motion-are inconsistent, they totally discard one of
the cues and an illusion is experienced. Examples of such illusions have been constructed and
the conditions have been identified under which they occur. Finally, a computational theory
has been introduced for combining contour and motion using the theory of regularization.
The theory explains such illusions and predicts many more. The same computational theory,
when applied to retinal motion estimation, explains the effect of boundaries on the perception
of motion that gives rise to a set of well known illusions described by Wallach.

Inverse problems in low-level vision tend to be ill-posed and smoothness assumptions
(regularization) need to be made in order to obtain unique solutions that vary continuously
as a function of the data. But the solution must not smooth over discontinuities in the
image and it is necessary to take into account the fact that the probability distributions
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of the smoothness measures are not known. The most popular theories of discontinuous
regularization (Blake, Marroquin) make strong assumptions about these distributions and
also result in nonconvex optimization problems whose solutions are difficult to obtain or
interpret. The theory of robust statistics (M-statistics) of Huber was applied [12] to obtain a
convex regularization that is also maximally robust against misspecification of the probability
distribution of large jumps in the unknown. This theory has been applied to the optical flow
constraint, which is notoriously noisy and inaccurate. The results show that this convex
regularization accurately preserves depth boundary information.

10.3. Normal flow based methods

An active observer can compute the relative depth of (stationary or moving) objects in the
field of view using only the spatiotemporal derivatives of the time varying image intensity
function. This can be done in a manner which is:

"* purposive in the sense that it solves only the relative depth from motion problem and
cannot be used for other problems related to motion; and

"* active in the sense that the activity of the observer is essential for the solution of the
problem. In fact, most of the computational burden is placed on the activity of the
observer.

Results indicate [19] that exact computation of retinal motion (optic flow or displacements)
does not appear to be a necessary first step for some problems related to visual motion,
contrary to the conventional wisdom. In addition, it has been demonstrated that optic flow,
whose computation is an ill-posed problem, is related to the motion of the scene only under
very restrictive assumptions. As a result, the use of optic flow in some quantitative motion
analysis studies is questionable.

Passive navigation refers to the ability of an organism or a robot that moves in its
environment to determine its own motion precisely on the basis of some perceptual input,
for the purposes of kinetic stabilization. A robust solution to the passive navigation problem
was developed [25] which is purposive, in the sense that it does not claim any generality; it
just solves the kinetic stabilization problem and cannot be used as it is for other problems
related to 3D motion. The solution is qualitative, in the sense that it comes as the answer to
a series of simple yes/no questions and not as the result of complicated numerical processing.
Finally, it is active, in the sense that the activity of the observer (in this case "saccades") is
essential for the solution of the problem.

The input to the perceptual process of kinetic stabilization that has been developed is the
normal flow, i.e. the projection of the optic flow along the direction of the image gradient.
Contributions of this work are the fact that translation can be estimated reliably from a
normal flow field that also contains rotation, and the theoretical error analysis, which gives
the method the potential of being used in a successful practical vision system.

When an object is moving in an unrestricted manner (translation and rotation) in the
3D world, in many cases, only the motion's translational components are of interest. For
a monocular observer, using only the normal flow-the spatiotemporal derivatives of the
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image intensity function-the problem of computing the direction of translation [27] has
been solved. Optical flow is not used, since its computation is an ill-posed problem and it is
not the same as the motion field-the projection of the 3D motion on the image plane-in
the general case. Two methods have been developed that perform different operations on
the normal flow; each of them requires the observer to be active. Both techniques address
the problem in two consecutive steps. First, the direction of translation parallel to the image
plane is determined, and it is then used to derive information about the motion in the third
dimension. The activities which the observer must perform to solve this special problem
are fixation and tracking: fixation, in order to simplify the reconstruction of 3D motion
parameters for a small area in the image; and tracking, in order to compensate for the lack
of existence of an optical flow field, and as a tool for accumulating 3D motion information
over time.
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